Fast Solver for Quasi-Periodic 2D-Helmholtz Scattering in Layered Media
Abstract: We present a fast spectral Galerkin scheme for the discretization of boundary integral equations arising from two-dimensional Helmholtz transmission problems in multi-layered periodic structures or gratings. Employing suitably parametrized Fourier basis and excluding Rayleigh-Wood anomalies, we rigorously establish the well-posedness of both continuous and discrete problems, and prove super-algebraic error convergence rates for the proposed scheme. Through several numerical examples, we confirm our findings and show performances competitive to those attained via Nystr\"om methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.