Papers
Topics
Authors
Recent
2000 character limit reached

Local SGD: Unified Theory and New Efficient Methods

Published 3 Nov 2020 in cs.LG | (2011.02828v1)

Abstract: We present a unified framework for analyzing local SGD methods in the convex and strongly convex regimes for distributed/federated training of supervised machine learning models. We recover several known methods as a special case of our general framework, including Local-SGD/FedAvg, SCAFFOLD, and several variants of SGD not originally designed for federated learning. Our framework covers both the identical and heterogeneous data settings, supports both random and deterministic number of local steps, and can work with a wide array of local stochastic gradient estimators, including shifted estimators which are able to adjust the fixed points of local iterations for faster convergence. As an application of our framework, we develop multiple novel FL optimizers which are superior to existing methods. In particular, we develop the first linearly converging local SGD method which does not require any data homogeneity or other strong assumptions.

Citations (104)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.