Papers
Topics
Authors
Recent
2000 character limit reached

Semi-supervised Learning for Singing Synthesis Timbre

Published 5 Nov 2020 in cs.SD, cs.LG, and eess.AS | (2011.02809v1)

Abstract: We propose a semi-supervised singing synthesizer, which is able to learn new voices from audio data only, without any annotations such as phonetic segmentation. Our system is an encoder-decoder model with two encoders, linguistic and acoustic, and one (acoustic) decoder. In a first step, the system is trained in a supervised manner, using a labelled multi-singer dataset. Here, we ensure that the embeddings produced by both encoders are similar, so that we can later use the model with either acoustic or linguistic input features. To learn a new voice in an unsupervised manner, the pretrained acoustic encoder is used to train a decoder for the target singer. Finally, at inference, the pretrained linguistic encoder is used together with the decoder of the new voice, to produce acoustic features from linguistic input. We evaluate our system with a listening test and show that the results are comparable to those obtained with an equivalent supervised approach.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.