Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty-Aware Voxel based 3D Object Detection and Tracking with von-Mises Loss (2011.02553v1)

Published 4 Nov 2020 in cs.CV and cs.LG

Abstract: Object detection and tracking is a key task in autonomy. Specifically, 3D object detection and tracking have been an emerging hot topic recently. Although various methods have been proposed for object detection, uncertainty in the 3D detection and tracking tasks has been less explored. Uncertainty helps us tackle the error in the perception system and improve robustness. In this paper, we propose a method for improving target tracking performance by adding uncertainty regression to the SECOND detector, which is one of the most representative algorithms of 3D object detection. Our method estimates positional and dimensional uncertainties with Gaussian Negative Log-Likelihood (NLL) Loss for estimation and introduces von-Mises NLL Loss for angular uncertainty estimation. We fed the uncertainty output into a classical object tracking framework and proved that our method increased the tracking performance compared against the vanilla tracker with constant covariance assumption.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com