Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An optimization derivation of the method of conjugate gradients (2011.02337v3)

Published 4 Nov 2020 in math.OC

Abstract: We give a derivation of the method of conjugate gradients based on the requirement that each iterate minimizes a strictly convex quadratic on the space spanned by the previously observed gradients. Rather than verifying that the search direction has the correct properties, we show that generation of such iterates is equivalent to generation of orthogonal gradients which gives the description of the direction and the step length. Our approach gives a straightforward way to see that the search direction of the method of conjugate gradients is a negative scalar times the gradient of minimum Euclidean norm evaluated on the affine span of the iterates generated so far.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.