Papers
Topics
Authors
Recent
2000 character limit reached

Hybrid Supervised Reinforced Model for Dialogue Systems

Published 4 Nov 2020 in cs.CL and cs.LG | (2011.02243v1)

Abstract: This paper presents a recurrent hybrid model and training procedure for task-oriented dialogue systems based on Deep Recurrent Q-Networks (DRQN). The model copes with both tasks required for Dialogue Management: State Tracking and Decision Making. It is based on modeling Human-Machine interaction into a latent representation embedding an interaction context to guide the discussion. The model achieves greater performance, learning speed and robustness than a non-recurrent baseline. Moreover, results allow interpreting and validating the policy evolution and the latent representations information-wise.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.