Papers
Topics
Authors
Recent
2000 character limit reached

Residual Likelihood Forests (2011.02086v1)

Published 4 Nov 2020 in stat.ML and cs.LG

Abstract: This paper presents a novel ensemble learning approach called Residual Likelihood Forests (RLF). Our weak learners produce conditional likelihoods that are sequentially optimized using global loss in the context of previous learners within a boosting-like framework (rather than probability distributions that are measured from observed data) and are combined multiplicatively (rather than additively). This increases the efficiency of our strong classifier, allowing for the design of classifiers which are more compact in terms of model capacity. We apply our method to several machine learning classification tasks, showing significant improvements in performance. When compared against several ensemble approaches including Random Forests and Gradient Boosted Trees, RLFs offer a significant improvement in performance whilst concurrently reducing the required model size.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.