Papers
Topics
Authors
Recent
2000 character limit reached

Knots, links, and long-range magic

Published 3 Nov 2020 in hep-th, cond-mat.str-el, and quant-ph | (2011.01962v2)

Abstract: We study the extent to which knot and link states (that is, states in 3d Chern-Simons theory prepared by path integration on knot and link complements) can or cannot be described by stabilizer states. States which are not classical mixtures of stabilizer states are known as "magic states" and play a key role in quantum resource theory. By implementing a particular magic monotone known as the "mana" we quantify the magic of knot and link states. In particular, for $SU(2)_k$ Chern-Simons theory we show that knot and link states are generically magical. For link states, we further investigate the mana associated to correlations between separate boundaries which characterizes the state's long-range magic. Our numerical results suggest that the magic of a majority of link states is entirely long-range. We make these statements sharper for torus links.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.