Papers
Topics
Authors
Recent
2000 character limit reached

Generating Unobserved Alternatives

Published 3 Nov 2020 in cs.LG, cs.CV, cs.NE, and stat.ML | (2011.01926v4)

Abstract: We consider problems where multiple predictions can be considered correct, but only one of them is given as supervision. This setting differs from both the regression and class-conditional generative modelling settings: in the former, there is a unique observed output for each input, which is provided as supervision; in the latter, there are many observed outputs for each input, and many are provided as supervision. Applying either regression methods and conditional generative models to the present setting often results in a model that can only make a single prediction for each input. We explore several problems that have this property and develop an approach that can generate multiple high-quality predictions given the same input. As a result, it can be used to generate high-quality outputs that are different from the observed output.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.