Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Autoencoding Features for Aviation Machine Learning Problems (2011.01464v2)

Published 3 Nov 2020 in cs.LG and stat.ML

Abstract: The current practice of manually processing features for high-dimensional and heterogeneous aviation data is labor-intensive, does not scale well to new problems, and is prone to information loss, affecting the effectiveness and maintainability of ML procedures. This research explored an unsupervised learning method, autoencoder, to extract effective features for aviation machine learning problems. The study explored variants of autoencoders with the aim of forcing the learned representations of the input to assume useful properties. A flight track anomaly detection autoencoder was developed to demonstrate the versatility of the technique. The research results show that the autoencoder can not only automatically extract effective features for the flight track data, but also efficiently deep clean data, thereby reducing the workload of data scientists. Moreover, the research leveraged transfer learning to efficiently train models for multiple airports. Transfer learning can reduce model training times from days to hours, as well as improving model performance. The developed applications and techniques are shared with the whole aviation community to improve effectiveness of ongoing and future machine learning studies.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.