Papers
Topics
Authors
Recent
Search
2000 character limit reached

Finite-energy infinite clusters without anchored expansion

Published 2 Nov 2020 in math.PR, math-ph, and math.MP | (2011.01377v2)

Abstract: Hermon and Hutchcroft have recently proved the long-standing conjecture that in Bernoulli(p) bond percolation on any nonamenable transitive graph G, at any p > p_c(G), the probability that the cluster of the origin is finite but has a large volume n decays exponentially in n. A corollary is that all infinite clusters have anchored expansion almost surely. They have asked if these results could hold more generally, for any finite energy ergodic invariant percolation. We give a counterexample, an invariant percolation on the 4-regular tree.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.