Sharp growth of the Ornstein-Uhlenbeck operator on Gaussian tail spaces
Abstract: Let $X$ be a standard Gaussian random variable. For any $p \in (1, \infty)$, we prove the existence of a universal constant $C_{p}>0$ such that the inequality $$(\mathbb{E} |h'(X)|{p}){1/p} \geq C_{p} \sqrt{d} (\mathbb{E} |h(X)|{p}){1/p}$$ holds for all $d\geq 1$ and all polynomials $h : \mathbb{R} \to \mathbb{C}$ whose spectrum is supported on frequencies at least $d$, that is, $\mathbb{E} h(X) X{k}=0$ for all $k=0,1, \ldots, d-1$. As an application of this optimal estimate, we obtain an affirmative answer to the Gaussian analogue of a question of Mendel and Naor (2014) concerning the growth of the Ornstein-Uhlenbeck operator on tail spaces of the real line. We also show the same bound for the gradient of analytic polynomials in an arbitrary dimension.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.