A counterexample to $L^{\infty}$-gradient type estimates for Ornstein-Uhlenbeck operators (2210.06347v1)
Abstract: Let $(\lambda_k)$ be a strictly increasing sequence of positive numbers such that $\sum_{k=1}{\infty} \frac{1}{\lambda_k} < \infty.$ Let $f $ be a bounded smooth function and denote by $u= uf$ the bounded classical solution to $u(x) - \frac{1}{2}\sum_{k=1}m D2_{kk} u(x) + \sum_{k =1}m \lambda_k x_k D_k u(x) = f(x), $ $ x \in \Rm$. It is known that the following dimension-free estimate holds: $$ \displaystyle \int_{\Rm} \Big (\sum_{k=1}m \lambda_k \, (D_k u (y))2 \Big){p/2} \mu_m (dy) \le (c_p)p \, \int_{\Rm} |f( y)|p \mu_m (dy),\;\;\; 1 < p < \infty; $$ here $\mu_m$ is the "diagonal" Gaussian measure determined by $\lambda_1, \ldots, \lambda_m$ and $c_p > 0$ is independent of $f$ and $m$. This is a consequence of generalized Meyer's inequalities [Chojnowska-Michalik, Goldys, J. Funct. Anal. 182 (2001)]. We show that, if $\lambda_k \sim k2$, then such estimate does not hold when $p= \infty$. Indeed we prove $$ \sup_{\substack{f \in C{ 2}b(\Rm),\;\; |f|{\infty} \leq 1}} \Big { \sum_{k=1}m \lambda_k \, (D_k uf (0))2 \Big } \to \infty \;\; \text {as} \; m \to \infty. $$ This is in contrast to the case of $\lambda_k = \lambda >0$, $k \ge 1$, where a dimension-free bound holds for $p =\infty$.