Papers
Topics
Authors
Recent
2000 character limit reached

Distributed Machine Learning for Computational Engineering using MPI

Published 2 Nov 2020 in cs.DC, cs.NA, and math.NA | (2011.01349v2)

Abstract: We propose a framework for training neural networks that are coupled with partial differential equations (PDEs) in a parallel computing environment. Unlike most distributed computing frameworks for deep neural networks, our focus is to parallelize both numerical solvers and deep neural networks in forward and adjoint computations. Our parallel computing model views data communication as a node in the computational graph for numerical simulations. The advantage of our model is that data communication and computing are cleanly separated and thus provide better flexibility, modularity, and testability. We demonstrate using various large-scale problems that we can achieve substantial acceleration by using parallel solvers for PDEs in training deep neural networks that are coupled with PDEs.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.