Papers
Topics
Authors
Recent
2000 character limit reached

Data-free Knowledge Distillation for Segmentation using Data-Enriching GAN

Published 2 Nov 2020 in cs.CV and eess.IV | (2011.00809v1)

Abstract: Distilling knowledge from huge pre-trained networks to improve the performance of tiny networks has favored deep learning models to be used in many real-time and mobile applications. Several approaches that demonstrate success in this field have made use of the true training dataset to extract relevant knowledge. In absence of the True dataset, however, extracting knowledge from deep networks is still a challenge. Recent works on data-free knowledge distillation demonstrate such techniques on classification tasks. To this end, we explore the task of data-free knowledge distillation for segmentation tasks. First, we identify several challenges specific to segmentation. We make use of the DeGAN training framework to propose a novel loss function for enforcing diversity in a setting where a few classes are underrepresented. Further, we explore a new training framework for performing knowledge distillation in a data-free setting. We get an improvement of 6.93% in Mean IoU over previous approaches.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.