Papers
Topics
Authors
Recent
2000 character limit reached

Transformer-based Arabic Dialect Identification (2011.00699v1)

Published 2 Nov 2020 in eess.AS

Abstract: This paper presents a dialect identification (DID) system based on the transformer neural network architecture. The conventional convolutional neural network (CNN)-based systems use the shorter receptive fields. We believe that long range information is equally important for language and DID, and self-attention mechanism in transformer captures the long range dependencies. In addition, to reduce the computational complexity, self-attention with downsampling is used to process the acoustic features. This process extracts sparse, yet informative features. Our experimental results show that transformer outperforms CNN-based networks on the Arabic dialect identification (ADI) dataset. We also report that the score-level fusion of CNN and transformer-based systems obtains an overall accuracy of 86.29% on the ADI17 database.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.