Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Fair Classification with Group-Dependent Label Noise (2011.00379v2)

Published 31 Oct 2020 in cs.LG, cs.AI, and cs.CY

Abstract: This work examines how to train fair classifiers in settings where training labels are corrupted with random noise, and where the error rates of corruption depend both on the label class and on the membership function for a protected subgroup. Heterogeneous label noise models systematic biases towards particular groups when generating annotations. We begin by presenting analytical results which show that naively imposing parity constraints on demographic disparity measures, without accounting for heterogeneous and group-dependent error rates, can decrease both the accuracy and the fairness of the resulting classifier. Our experiments demonstrate these issues arise in practice as well. We address these problems by performing empirical risk minimization with carefully defined surrogate loss functions and surrogate constraints that help avoid the pitfalls introduced by heterogeneous label noise. We provide both theoretical and empirical justifications for the efficacy of our methods. We view our results as an important example of how imposing fairness on biased data sets without proper care can do at least as much harm as it does good.

Citations (93)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.