Papers
Topics
Authors
Recent
2000 character limit reached

Defect Detection by MIMO Wireless Sensing based on Weighted Low-Rank plus Sparse Recovery

Published 31 Oct 2020 in eess.SP | (2011.00278v2)

Abstract: We present a compressive sensing based defect detection by multiple input multiple output (MIMO) wireless radar. Here, defects are inside a layered material structure, therefore, due to reflections from the surface of the layered material structure the defect detection is challenging. By utilizing a low-rank nature of the reflections of the layered material structure and sparse nature of the defects, we propose a method based on rank minimization and sparse recovery. To improve the accuracy in the recovery of low-rank and sparse components, we propose a non-convex approach based on the iteratively reweighted nuclear norm and iteratively reweighted $\ell_1-$norm algorithm. Our numerical results show that the proposed method is able to demix and recover the signalling responses of the defects and layered structure successfully from substantially reduced number of observations. Further, the proposed approach outperforms the state-of-the-art clutter reduction approaches

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.