Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Norm resolvent convergence of discretized Fourier multipliers (2010.16215v2)

Published 30 Oct 2020 in math.FA, math-ph, math.MP, and math.SP

Abstract: We prove norm estimates for the difference of resolvents of operators and their discrete counterparts, embedded into the continuum using biorthogonal Riesz sequences. The estimates are given in the operator norm for operators on square integrable functions, and depend explicitly on the mesh size for the discrete operators. The operators are a sum of a Fourier multiplier and a multiplicative potential. The Fourier multipliers include the fractional Laplacian and the pseudo-relativistic free Hamiltonian. The potentials are real, bounded, and H\"older continuous. As a side-product, the Hausdorff distance between the spectra of the resolvents of the continuous and discrete operators decays with the same rate in the mesh size as for the norm resolvent estimates. The same result holds for the spectra of the original operators in a local Hausdorff distance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.