Papers
Topics
Authors
Recent
2000 character limit reached

A Local Search Framework for Experimental Design (2010.15805v2)

Published 29 Oct 2020 in cs.DS, cs.LG, stat.CO, and stat.ML

Abstract: We present a local search framework to design and analyze both combinatorial algorithms and rounding algorithms for experimental design problems. This framework provides a unifying approach to match and improve all known results in D/A/E-design and to obtain new results in previously unknown settings. For combinatorial algorithms, we provide a new analysis of the classical Fedorov's exchange method. We prove that this simple local search algorithm works well as long as there exists an almost optimal solution with good condition number. Moreover, we design a new combinatorial local search algorithm for E-design using the regret minimization framework. For rounding algorithms, we provide a unified randomized exchange algorithm to match and improve previous results for D/A/E-design. Furthermore, the algorithm works in the more general setting to approximately satisfy multiple knapsack constraints, which can be used for weighted experimental design and for incorporating fairness constraints into experimental design.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.