Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Vertex nomination between graphs via spectral embedding and quadratic programming (2010.14622v4)

Published 24 Oct 2020 in cs.SI and stat.ME

Abstract: Given a network and a subset of interesting vertices whose identities are only partially known, the vertex nomination problem seeks to rank the remaining vertices in such a way that the interesting vertices are ranked at the top of the list. An important variant of this problem is vertex nomination in the multi-graphs setting. Given two graphs $G_1, G_2$ with common vertices and a vertex of interest $x \in G_1$, we wish to rank the vertices of $G_2$ such that the vertices most similar to $x$ are ranked at the top of the list. The current paper addresses this problem and proposes a method that first applies adjacency spectral graph embedding to embed the graphs into a common Euclidean space, and then solves a penalized linear assignment problem to obtain the nomination lists. Since the spectral embedding of the graphs are only unique up to orthogonal transformations, we present two approaches to eliminate this potential non-identifiability. One approach is based on orthogonal Procrustes and is applicable when there are enough vertices with known correspondence between the two graphs. Another approach uses adaptive point set registration and is applicable when there are few or no vertices with known correspondence. We show that our nomination scheme leads to accurate nomination under a generative model for pairs of random graphs that are approximately low-rank and possibly with pairwise edge correlations. We illustrate our algorithm's performance through simulation studies on synthetic data as well as analysis of a high-school friendship network and analysis of transition rates between web pages on the Bing search engine.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.