Papers
Topics
Authors
Recent
2000 character limit reached

On Linear Representation, Complexity and Inversion of maps over finite fields (2010.14601v5)

Published 26 Oct 2020 in cs.SC, cs.DM, and math.RT

Abstract: This paper defines a linear representation for nonlinear maps $F:\mathbb{F}n\rightarrow\mathbb{F}n$ where $\mathbb{F}$ is a finite field, in terms of matrices over $\mathbb{F}$. This linear representation of the map $F$ associates a unique number $N$ and a unique matrix $M$ in $\mathbb{F}{N\times N}$, called the Linear Complexity and the Linear Representation of $F$ respectively, and shows that the compositional powers $F{(k)}$ are represented by matrix powers $Mk$. It is shown that for a permutation map $F$ with representation $M$, the inverse map has the linear representation $M{-1}$. This framework of representation is extended to a parameterized family of maps $F_{\lambda}(x): \mathbb{F} \to \mathbb{F}$, defined in terms of a parameter $\lambda \in \mathbb{F}$, leading to the definition of an analogous linear complexity of the map $F_{\lambda}(x)$, and a parameter-dependent matrix representation $M_\lambda$ defined over the univariate polynomial ring $\mathbb{F}[\lambda]$. Such a representation leads to the construction of a parametric inverse of such maps where the condition for invertibility is expressed through the unimodularity of this matrix representation $M_\lambda$. Apart from computing the compositional inverses of permutation polynomials, this linear representation is also used to compute the cycle structures of the permutation map. Lastly, this representation is extended to a representation of the cyclic group generated by a permutation map $F$, and to the group generated by a finite number of permutation maps over $\mathbb{F}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. H. D. Jong, Modeling and simulation of genetic regulatory systems : A literature review, Journal of Computational Biology 9 (2002) 67–103.
  2. S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of Theoretical Biology 22 (1969) 437–467. doi:10.1016/0022-5193(69)90015-0.
  3. K. Oishi, E. Klavins, Framework for engineering finite state machines in gene regulatory networks, ACS Synthetic Biology 3 (2014) 652–665. doi:10.1021/sb4001799.
  4. R. Thomas, Boolean formalization of genetic control circuits, Journal of Theoretical Biology 42 (December 1973) 563–585. doi:10.1016/0022-5193(73)90247-6.
  5. G. M. A. Cafure, A. Waissbein, Inverting bijective polynomial maps over finite fields, IEEE Information Theory Workshop - ITW ’06, Punta del Este (2006).
  6. R. S. Coulter, M. Henderson, The compositional inverse of a class of permutation polynomials over a finite field, Bulletin of the Australian Mathematical Society 65 (2002) 521–526. doi:10.1017/S0004972700020578.
  7. A. Tuxanidy, Q. Wang, On the inverses of some classes of permutations of finite fields, Finite Fields and Their Applications 28 (2014) 244–281. doi:10.1016/j.ffa.2014.02.006.
  8. On inverses of permutation polynomials of small degree over finite fields, IEEE Transactions on Information Theory 66 (2020) 914–922. doi:10.1109/TIT.2019.2939113.
  9. Y. Laigle-Chapuy, Permutation polynomials and applications to coding theory, Finite Fields and Their Applications 13 (2007) 58–70. doi:10.1089/10665270252833208.
  10. J. Levine, J. V. Brawley, Some cryptographic applications of permutation polynomials, Cryptologia 1 (1977) 76–92. doi:10.1080/0161-117791832814.
  11. On the cycle structure of permutation polynomials, Finite Fields and Their Applications 14 (2008) 593–614. doi:10.1016/j.ffa.2007.08.003.
  12. R. Lidl, G. Mullen, Cycle structure of dickson permutation polynomials, Mathematical Journal of Okayama Univeristy 33 (1991) 1–11. doi:10.1016/j.ffa.2007.08.003.
  13. On coefficients of powers of polynomials and their compositionsover finite fields, Contemporary Developments in Finite Fields and Applications (2016) 270–281. doi:10.1142/9789814719261_0016.
  14. B. Wu, Z. Liu, Linearized polynomials over finite fields revisited, Finite Fields and their Applications 22 (2013) 79–100. doi:10.1016/j.ffa.2013.03.003.
  15. J. Massey, Shift-register synthesis and bch decoding, IEEE Transactions on Information Theory 15 (1969) 122–127. doi:10.1109/TIT.1969.1054260.
  16. R. Anantharaman, V. Sule, Koopman operator approach for computing structure of solutions and observability of nonlinear dynamical systems over finite fields, Mathematics of Control Signals and Systems 33 (2021) 331–358. doi:10.1007/s00498-021-00286-y.
  17. B. O. Koopman, Hamiltonian systems and transformation in hilbert space, Proceedings of the National Academy of Sciences of the United States of America 17(5) (1931) 315–318.
  18. A data driven approximation of the koopman operator: Extending dynamic mode decomposition, Journal of Nonlinear Science 25(6) (2015) 1307–1346. doi:10.1007/s00332-015-9258-5.
  19. A. Muratović-Ribić, A note on the coefficients of inverse polynomials, Finite Fields and Their Applications 13(4) (2007) 977–980. doi:10.1016/j.ffa.2006.11.003.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.