Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Disaggregated Accelerator Management System for Cloud Data Centers (2010.13594v1)

Published 26 Oct 2020 in cs.OS

Abstract: A conventional data center that consists of monolithic-servers is confronted with limitations including lack of operational flexibility, low resource utilization, low maintainability, etc. Resource disaggregation is a promising solution to address the above issues. We propose a concept of disaggregated cloud data center architecture called Flow-in-Cloud (FiC) that enables an existing cluster computer system to expand an accelerator pool through a high-speed network. FlowOS-RM manages the entire pool resources, and deploys a user job on a dynamically constructed slice according to a user request. This slice consists of compute nodes and accelerators where each accelerator is attached to the corresponding compute node. This paper demonstrates the feasibility of FiC in a proof of concept experiment running a distributed deep learning application on the prototype system. The result successfully warrants the applicability of the proposed system.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.