Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ghost Effect from Boltzmann Theory: Expansion with Remainder (2301.09560v3)

Published 23 Jan 2023 in math.AP

Abstract: Consider the limit $\varepsilon\rightarrow0$ of the steady Boltzmann problem \begin{align} v\cdot\nabla_x\mathfrak{F}=\varepsilon{-1}Q[\mathfrak{F},\mathfrak{F}],\quad \mathfrak{F}\big|{v\cdot n<0}=M_w\displaystyle\int{v'\cdot n>0} \mathfrak{F}(v')|v'\cdot n|\mathrm{d}{v'}, \end{align} where $\displaystyle M_w(x_0,v):=\frac{1}{2\pi\big(T_w(x_0)\big)2} \exp\bigg(-\frac{|v|2}{2T_w(x_0)}\bigg)$ for $x_0\in\partial\Omega$ is the wall Maxwellian in the diffuse-reflection boundary condition. In the natural case of $|\nabla T_w|=O(1)$, for any constant $P>0$, the Hilbert expansion leads to \begin{align}\label{expansion} \mathfrak{F}\approx \mu+\varepsilon\bigg{\mu\bigg(\rho_1+u_1\cdot v+T_1\frac{|v|2-3T}{2}\bigg)-\mu{\frac{1}{2}}\left(\mathscr{A}\cdot\frac{\nabla_xT}{2T2}\right)\bigg} \end{align} where $\displaystyle\mu(x,v):=\frac{\rho(x)}{\big(2\pi T(x)\big){\frac{3}{2}}} \exp\bigg(-\frac{|v|2}{2T(x)}\bigg)$, and $(\rho,u_1,T)$ is determined by a Navier-Stokes-Fourier system with "ghost" effect. The goal of this paper is to construct $\mathfrak{F}$ in the form of \begin{align}\label{aa 08} \mathfrak{F}(x,v)=&\mu+\mu{\frac{1}{2}}\Big(\varepsilon f_1+\varepsilon2f_2\Big)+\mu_w{\frac{1}{2}}\Big(\varepsilon fB_1\Big)+\varepsilon{\alpha}\mu{\frac{1}{2}}R, \end{align} for interior solutions $f_1$, $f_2$ and boundary layer $fB_1$, where $\mu_w$ is $\mu$ computed for $T=T_w$, and derive equation for the remainder $R$ with some constant $\alpha\geq1$. To prove the validity of the expansion suitable bounds on $R$ are needed, which are provided in the companion paper [Esposito-Guo-Rossana-Wu2023].

Citations (2)

Summary

We haven't generated a summary for this paper yet.