Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inequalities for linear functionals and numerical radii on $\mathbf{C}^*$-algebras (2410.02435v1)

Published 3 Oct 2024 in math.FA

Abstract: Let $\mathcal{A}$ be a unital $\mathbf{C}*$-algebra with unit $e$. We develop several inequalities for a positive linear functional $f$ on $\mathcal{A}$ and obtain several bounds for the numerical radius $v(a)$ of an element $a\in \mathcal{A}$. Among other inequalities, we show that if $ a_k, b_k, x_k\in \mathcal{A}$, $r\in \mathbb{N}$ and $f(e)=1$, then \begin{eqnarray*} \left| f \left( \sum_{k=1}n a_k*x_kb_k\right)\right|{r} &\leq& \frac{n{r-1}}{\sqrt{2}} \left| f\left( \sum_{k=1}n \big( (b_k*|x_k| b_k){r}+ i (a_k|x_k^|a_k){r} \big) \right) \right| \quad (i=\sqrt{-1}), \end{eqnarray*} \begin{eqnarray*} \left| f\left( \sum_{k=1}n a_k\right)\right|{2r} &\leq& \frac{n{2r-1}}{2} f \left( \sum_{k=1}n Re(|a_k|r|a_k*|r) + \frac12 \sum_{k=1}n (|a_k|{2r}+ |a_k*|{2r} ) \right). \end{eqnarray*} We find several equivalent conditions for $v(a)=\frac{|a|}{2}$ and $v2(a)={\frac{1}{4}|aa+aa^|}$. We prove that $v2(a)={\frac{1}{4}|aa+aa^|}$ (resp., $v(a)=\frac{|a|}{2}$) if and only if $\mathbb{S}{\frac12{ | aa+aa^|}{1/2}} \subseteq V(a) \subseteq \mathbb{D}{\frac12 {| aa+aa^|}{1/2}}$ (resp., $\mathbb{S}{\frac12 | a|} \subseteq V(a) \subseteq \mathbb{D}{\frac12 | a|}$), where $V(a)$ is the numerical range of $a$ and $\mathbb{D}_k$ (resp., $\mathbb{S}_k$) denotes the circular disk (resp., semi-circular disk) with center at the origin and radius $k$. We also study inequalities for the $(\alpha,\beta)$-normal elements in $\mathcal{A}.$

Summary

We haven't generated a summary for this paper yet.