Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the Slightly Perturbed De Gregorio Model on $S^1$ (2010.12700v2)

Published 23 Oct 2020 in math.AP

Abstract: It is conjectured that the generalization of the Constantin-Lax-Majda model (gCLM) $\omega_t + a u\omega_x = u_x \omega$ due to Okamoto, Sakajo and Wunsch can develop a finite time singularity from smooth initial data for $a < 1$. For the endpoint case where $a$ is close to and less than $1$, we prove finite time asymptotically self-similar blowup of gCLM on a circle from a class of smooth initial data. For the gCLM on a circle with the same initial data, if the strength of advection $a$ is slightly larger than $1$, we prove that the solution exists globally with $|| \omega(t)||_{H1}$ decaying in a rate of $O(t{-1})$ for large time. The transition threshold between two different behaviors is $a=1$, which corresponds to the De Gregorio model.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.