Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multivariate Interpolation in Unisolvent Nodes -- Lifting the Curse of Dimensionality

Published 21 Oct 2020 in math.NA and cs.NA | (2010.10824v3)

Abstract: We extend Newton and Lagrange interpolation to arbitrary dimensions. The core contribution that enables this is a generalized notion of non-tensorial unisolvent nodes, i.e., nodes on which the multivariate polynomial interpolant of a function is unique. By validation, we reach the optimal exponential Trefethen rates for a class of analytic functions, we term Trefethen functions. The number of interpolation nodes required for computing the optimal interpolant depends sub-exponentially on the dimension, hence resisting the curse of dimensionality. Based on these results, we propose an algorithm to efficiently and numerically stably solve arbitrary-dimensional interpolation problems, with at most quadratic runtime and linear memory requirement.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.