Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Bluff body uses deep-reinforcement-learning trained active flow control to achieve hydrodynamic stealth (2010.10429v1)

Published 20 Oct 2020 in physics.flu-dyn

Abstract: We propose a novel active-flow-control (AFC) strategy for bluff bodies to hide their hydrodynamic traces from predators. A group of windward-suction-leeward-blowing (WSLB) actuators are adopted to control the wake of a circular cylinder submerged in a uniform flow. An array of velocity sensors are deployed in the near wake to provide feedback signals. Through the data-driven deep reinforcement learning (DRL), effective control strategies are trained for the WSLB actuation to mitigate the cylinder's hydrodynamic signatures, i.e., strong shears and periodically shed vortices. Only a 0.29% deficit in streamwise velocity is detected, which is a 99.5% reduction from the uncontrolled value. The same control strategy is found to be also effective when the cylinder undergoes transverse vortex-induced vibration (VIV). The findings from this study can shed some lights on the design and operation of underwater structures and robotics to achieve hydrodynamic stealth.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.