Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 411 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Essential self-adjointness of symmetric first-order differential systems and confinement of Dirac particles on bounded domains in $\mathbb{R}^d$ (2010.09816v3)

Published 19 Oct 2020 in math-ph, math.AP, math.FA, and math.MP

Abstract: We prove essential self-adjointness of Dirac operators with Lorentz scalar potentials which grow sufficiently fast near the boundary $\partial\Omega$ of the spatial domain $\Omega\subset\mathbb Rd$. On the way, we first consider general symmetric first order differential systems, for which we identify a new, large class of potentials, called scalar potentials, ensuring essential self-adjointness. Furthermore, using the supersymmetric structure of the Dirac operator in the two dimensional case, we prove confinement of Dirac particles, i.e. essential self-adjointness of the operator, solely by magnetic fields $\mathcal{B}$ assumed to grow, near $\partial\Omega$, faster than $1/\big(2\text{dist} (x, \partial\Omega)2\big)$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.