Papers
Topics
Authors
Recent
2000 character limit reached

Operator Shifting for Noisy Elliptic Systems

Published 19 Oct 2020 in math.ST, cs.NA, math.NA, and stat.TH | (2010.09656v5)

Abstract: In the computational sciences, one must often estimate model parameters from data subject to noise and uncertainty, leading to inaccurate results. In order to improve the accuracy of models with noisy parameters, we consider the problem of reducing error in an elliptic linear system with the operator corrupted by noise. We assume the noise preserves positive definiteness, but otherwise, we make no additional assumptions the structure of the noise. Under these assumptions, we propose the operator shifting framework, a collection of easy-to-implement algorithms that augment a noisy inverse operator by subtracting an additional auxiliary term. In a similar fashion to the James-Stein estimator, this has the effect of drawing the noisy inverse operator closer to the ground truth, and hence reduces error by reducing both bias and variance. We develop bootstrap Monte Carlo algorithms to estimate the required augmentation magnitude for optimal error reduction in the noisy system. To improve the tractability of these algorithms, we propose several approximate polynomial expansions for the operator inverse, and prove desirable convergence and monotonicity properties for these expansions. We also prove theorems that quantify the error reduction obtained by operator augmentation. In addition to theoretical results, we provide a set of numerical experiments on four different graph and grid Laplacian systems that all demonstrate effectiveness of our method.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.