Papers
Topics
Authors
Recent
2000 character limit reached

Global null-controllability for stochastic semilinear parabolic equations

Published 17 Oct 2020 in math.AP | (2010.08854v1)

Abstract: In this paper, we prove the small-time global null-controllability of forward (resp. backward) semilinear stochastic parabolic equations with globally Lipschitz nonlinearities in the drift and diffusion terms (resp. in the drift term). In particular, we solve the open question posed by S. Tang and X. Zhang, in 2009. We propose a new twist on a classical strategy for controlling linear stochastic systems. By employing a new refined Carleman estimate, we obtain a controllability result in a weighted space for a linear system with source terms. The main novelty here is that the Carleman parameters are made explicit and are then used in a Banach fixed point method. This allows to circumvent the well-known problem of the lack of compactness embeddings for the solutions spaces arising in the study of controllability problems for stochastic PDEs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.