On finite groups with an automorphism of prime order whose fixed points have bounded Engel sinks
Abstract: A left Engel sink of an element $g$ of a group $G$ is a set ${\mathscr E}(g)$ such that for every $x\in G$ all sufficiently long commutators $[...[[x,g],g],\dots ,g]$ belong to ${\mathscr E}(g)$. (Thus, $g$ is a left Engel element precisely when we can choose ${\mathscr E}(g)={ 1}$.) We prove that if a finite group $G$ admits an automorphism $\varphi $ of prime order coprime to $|G|$ such that for some positive integer $m$ every element of the centralizer $C_G(\varphi )$ has a left Engel sink of cardinality at most $m$, then the index of the second Fitting subgroup $F_2(G)$ is bounded in terms of $m$. A right Engel sink of an element $g$ of a group $G$ is a set ${\mathscr R}(g)$ such that for every $x\in G$ all sufficiently long commutators $[...[[g,x],x],\dots ,x]$ belong to ${\mathscr R}(g)$. (Thus, $g$ is a right Engel element precisely when we can choose ${\mathscr R}(g)={ 1}$.) We prove that if a finite group $G$ admits an automorphism $\varphi$ of prime order coprime to $|G|$ such that for some positive integer $m$ every element of the centralizer $C_G(\varphi )$ has a right Engel sink of cardinality at most $m$, then the index of the Fitting subgroup $F_1(G)$ is bounded in terms of $m$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.