Papers
Topics
Authors
Recent
2000 character limit reached

Network Topology Inference with Graphon Spectral Penalties (2010.07872v1)

Published 15 Oct 2020 in eess.SP

Abstract: We consider the problem of inferring the unobserved edges of a graph from data supported on its nodes. In line with existing approaches, we propose a convex program for recovering a graph Laplacian that is approximately diagonalizable by a set of eigenvectors obtained from the second-order moment of the observed data. Unlike existing work, we incorporate prior knowledge about the distribution from where the underlying graph was drawn. In particular, we consider the case where the graph was drawn from a graphon model, and we supplement our convex optimization problem with a provably-valid regularizer on the spectrum of the graph to be recovered. We present the cases where the graphon model is assumed to be known and the more practical setting where the relevant features of the model are inferred from auxiliary network observations. Numerical experiments on synthetic and real-world data illustrate the advantage of leveraging the proposed graphon prior, even when the prior is imperfect.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.