Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Joint Semantic Analysis with Document-Level Cross-Task Coherence Rewards (2010.05567v1)

Published 12 Oct 2020 in cs.CL

Abstract: Coreference resolution and semantic role labeling are NLP tasks that capture different aspects of semantics, indicating respectively, which expressions refer to the same entity, and what semantic roles expressions serve in the sentence. However, they are often closely interdependent, and both generally necessitate natural language understanding. Do they form a coherent abstract representation of documents? We present a neural network architecture for joint coreference resolution and semantic role labeling for English, and train graph neural networks to model the 'coherence' of the combined shallow semantic graph. Using the resulting coherence score as a reward for our joint semantic analyzer, we use reinforcement learning to encourage global coherence over the document and between semantic annotations. This leads to improvements on both tasks in multiple datasets from different domains, and across a range of encoders of different expressivity, calling, we believe, for a more holistic approach to semantics in NLP.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.