An ergodic theorem for asymptotically periodic time-inhomogeneous Markov processes, with application to quasi-stationarity with moving boundaries (2010.05483v2)
Abstract: This paper deals with ergodic theorems for particular time-inhomogeneous Markov processes, whose the time-inhomogeneity is asymptotically periodic. Under a Lyapunov/minorization condition, it is shown that, for any measurable bounded function $f$, the time average $\frac{1}{t} \int_0t f(X_s)ds$ converges in $\mathbb{L}2$ towards a limiting distribution, starting from any initial distribution for the process $(X_t)_{t \geq 0}$. This convergence can be improved to an almost sure convergence under an additional assumption on the initial measure. This result will be then applied to show the existence of a quasi-ergodic distribution for processes absorbed by an asymptotically periodic moving boundary, satisfying a conditional Doeblin's condition.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.