Papers
Topics
Authors
Recent
2000 character limit reached

On the Le Cam distance between Poisson and Gaussian experiments and the asymptotic properties of Szasz estimators (2010.05146v3)

Published 11 Oct 2020 in math.ST, math.PR, and stat.TH

Abstract: In this paper, we prove a local limit theorem for the ratio of the Poisson distribution to the Gaussian distribution with the same mean and variance, using only elementary methods (Taylor expansions and Stirling's formula). We then apply the result to derive an upper bound on the Le Cam distance between Poisson and Gaussian experiments, which gives a complete proof of the sketch provided in the unpublished set of lecture notes by Pollard (2010), who uses a different approach. We also use the local limit theorem to derive the asymptotics of the variance for Bernstein c.d.f. and density estimators with Poisson weights on the positive half-line (also called Szasz estimators). The propagation of errors in the literature due to the incorrect estimate in Lemma 2 (iv) of Leblanc (2012) is addressed in the Appendix.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.