Papers
Topics
Authors
Recent
2000 character limit reached

Baseline System of Voice Conversion Challenge 2020 with Cyclic Variational Autoencoder and Parallel WaveGAN

Published 9 Oct 2020 in cs.SD, cs.CL, and eess.AS | (2010.04429v1)

Abstract: In this paper, we present a description of the baseline system of Voice Conversion Challenge (VCC) 2020 with a cyclic variational autoencoder (CycleVAE) and Parallel WaveGAN (PWG), i.e., CycleVAEPWG. CycleVAE is a nonparallel VAE-based voice conversion that utilizes converted acoustic features to consider cyclically reconstructed spectra during optimization. On the other hand, PWG is a non-autoregressive neural vocoder that is based on a generative adversarial network for a high-quality and fast waveform generator. In practice, the CycleVAEPWG system can be straightforwardly developed with the VCC 2020 dataset using a unified model for both Task 1 (intralingual) and Task 2 (cross-lingual), where our open-source implementation is available at https://github.com/bigpon/vcc20_baseline_cyclevae. The results of VCC 2020 have demonstrated that the CycleVAEPWG baseline achieves the following: 1) a mean opinion score (MOS) of 2.87 in naturalness and a speaker similarity percentage (Sim) of 75.37% for Task 1, and 2) a MOS of 2.56 and a Sim of 56.46% for Task 2, showing an approximately or nearly average score for naturalness and an above average score for speaker similarity.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.