Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Automatic Post-selection by Ancillae Thermalisation (2010.04173v2)

Published 8 Oct 2020 in quant-ph and cond-mat.str-el

Abstract: Tasks such as classification of data and determining the groundstate of a Hamiltonian cannot be carried out through purely unitary quantum evolution. Instead, the inherent non-unitarity of the measurement process must be harnessed. Post-selection and its extensions provide a way to do this. However they make inefficient use of time resources -- a typical computation might require $O(2m)$ measurements over $m$ qubits to reach a desired accuracy. We propose a method inspired by the eigenstate thermalisation hypothesis, that harnesses the induced non-linearity of measurement on a subsystem. Post-selection on $m$ ancillae qubits is replaced with tracing out $O(\log\epsilon / \log(1-p))$ (where p is the probability of a successful measurement) to attain the same accuracy as the post-selection circuit. We demonstrate this scheme on the quantum perceptron and phase estimation algorithm. This method is particularly advantageous on current quantum computers involving superconducting circuits.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.