2000 character limit reached
Mixture-based estimation of entropy (2010.04058v2)
Published 8 Oct 2020 in stat.ME and stat.CO
Abstract: The entropy is a measure of uncertainty that plays a central role in information theory. When the distribution of the data is unknown, an estimate of the entropy needs be obtained from the data sample itself. We propose a semi-parametric estimate, based on a mixture model approximation of the distribution of interest. The estimate can rely on any type of mixture, but we focus on Gaussian mixture model to demonstrate its accuracy and versatility. Performance of the proposed approach is assessed through a series of simulation studies. We also illustrate its use on two real-life data examples.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.