Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Improve Adversarial Robustness via Weight Penalization on Classification Layer (2010.03844v1)

Published 8 Oct 2020 in cs.LG and cs.CV

Abstract: It is well-known that deep neural networks are vulnerable to adversarial attacks. Recent studies show that well-designed classification parts can lead to better robustness. However, there is still much space for improvement along this line. In this paper, we first prove that, from a geometric point of view, the robustness of a neural network is equivalent to some angular margin condition of the classifier weights. We then explain why ReLU type function is not a good choice for activation under this framework. These findings reveal the limitations of the existing approaches and lead us to develop a novel light-weight-penalized defensive method, which is simple and has a good scalability. Empirical results on multiple benchmark datasets demonstrate that our method can effectively improve the robustness of the network without requiring too much additional computation, while maintaining a high classification precision for clean data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.