Photon Ring Autocorrelations (2010.03683v3)
Abstract: In the presence of a black hole, light sources connect to observers along multiple paths. As a result, observed brightness fluctuations must be correlated across different times and positions in black hole images. Photons that execute multiple orbits around the black hole appear near a critical curve in the observer sky, giving rise to the photon ring. In this paper, a novel observable is proposed: the two-point correlation function of intensity fluctuations on the photon ring. This correlation function is analytically computed for a Kerr black hole surrounded by stochastic equatorial emission, with source statistics motivated by simulations of a turbulent accretion flow. It is shown that this two-point function exhibits a universal, self-similar structure consisting of multiple peaks of identical shape: while the profile of each peak encodes statistical properties of fluctuations in the source, the locations and heights of the peaks are determined purely by the black hole parameters. Measuring these peaks would demonstrate the existence of the photon ring without resolving its thickness, and would provide estimates of black hole mass and spin. With regular monitoring over sufficiently long timescales, this measurement could be possible via interferometric imaging with modest improvements to the Event Horizon Telescope.
- Event Horizon Telescope Collaboration, K. Akiyama, A. Alberdi, et al., “First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole,” ApJ 875 no. 1, (Apr., 2019) L1, arXiv:1906.11238 [astro-ph.GA].
- Event Horizon Telescope Collaboration, K. Akiyama, A. Alberdi, et al., “First M87 Event Horizon Telescope Results. II. Array and Instrumentation,” ApJ 875 no. 1, (Apr., 2019) L2, arXiv:1906.11239 [astro-ph.IM].
- Event Horizon Telescope Collaboration, K. Akiyama, A. Alberdi, et al., “First M87 Event Horizon Telescope Results. III. Data Processing and Calibration,” ApJ 875 no. 1, (Apr., 2019) L3, arXiv:1906.11240 [astro-ph.GA].
- Event Horizon Telescope Collaboration, K. Akiyama, A. Alberdi, et al., “First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole,” ApJ 875 no. 1, (Apr., 2019) L4, arXiv:1906.11241 [astro-ph.GA].
- Event Horizon Telescope Collaboration, K. Akiyama, A. Alberdi, et al., “First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring,” ApJ 875 no. 1, (Apr., 2019) L5, arXiv:1906.11242 [astro-ph.GA].
- Event Horizon Telescope Collaboration, K. Akiyama, A. Alberdi, et al., “First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole,” ApJ 875 no. 1, (Apr., 2019) L6, arXiv:1906.11243 [astro-ph.GA].
- D. Hilbert, “Die Grundlagen der Physik (Zweite Mitteilung),” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1917 (1917) 53–76.
- C. Darwin, “The Gravity Field of a Particle,” Proceedings of the Royal Society of London Series A 249 no. 1257, (Jan., 1959) 180–194.
- J. M. Bardeen, “Timelike and null geodesics in the Kerr metric.,” in Black Holes (Les Astres Occlus), C. Dewitt and B. S. Dewitt, eds., pp. 215–239. Jan., 1973.
- J. P. Luminet, “Image of a spherical black hole with thin accretion disk.,” A&A 75 (May, 1979) 228–235.
- H. Falcke, F. Melia, and E. Agol, “Viewing the Shadow of the Black Hole at the Galactic Center,” ApJ 528 no. 1, (Jan., 2000) L13–L16, arXiv:astro-ph/9912263 [astro-ph].
- K. Beckwith and C. Done, “Extreme gravitational lensing near rotating black holes,” MNRAS 359 no. 4, (June, 2005) 1217–1228, arXiv:astro-ph/0411339 [astro-ph].
- C. F. Gammie, J. C. McKinney, and G. Tóth, “HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics,” ApJ 589 no. 1, (May, 2003) 444–457, arXiv:astro-ph/0301509 [astro-ph].
- O. Porth, K. Chatterjee, R. Narayan, et al., “The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project,” ApJS 243 no. 2, (Aug., 2019) 26, arXiv:1904.04923 [astro-ph.HE].
- S. E. Gralla, D. E. Holz, and R. M. Wald, “Black hole shadows, photon rings, and lensing rings,” Phys. Rev. D 100 no. 2, (July, 2019) 024018, arXiv:1906.00873 [astro-ph.HE].
- M. D. Johnson, A. Lupsasca, A. Strominger, et al., “Universal interferometric signatures of a black hole’s photon ring,” Science Advances 6 no. 12, (Mar., 2020) eaaz1310, arXiv:1907.04329 [astro-ph.IM].
- S. E. Gralla and A. Lupsasca, “Lensing by Kerr black holes,” Phys. Rev. D 101 no. 4, (Feb., 2020) 044031, arXiv:1910.12873 [gr-qc].
- R. Narayan, M. D. Johnson, and C. F. Gammie, “The Shadow of a Spherically Accreting Black Hole,” ApJ 885 no. 2, (Nov., 2019) L33, arXiv:1910.02957 [astro-ph.HE].
- S. E. Gralla, “Measuring the shape of a black hole photon ring,” Phys. Rev. D 102 no. 4, (Aug., 2020) 044017, arXiv:2005.03856 [astro-ph.HE].
- J. R. Farah, D. W. Pesce, M. D. Johnson, and L. Blackburn, “On the Approximation of the Black Hole Shadow with a Simple Polar Curve,” ApJ 900 no. 1, (Sept., 2020) 77, arXiv:2007.06732 [astro-ph.HE].
- S. E. Gralla and A. Lupsasca, “Observable shape of black hole photon rings,” Phys. Rev. D 102 no. 12, (Dec., 2020) 124003, arXiv:2007.10336 [gr-qc].
- S. E. Gralla, A. Lupsasca, and D. P. Marrone, “The Shape of the Black Hole Photon Ring: A Precise Test of Strong-Field General Relativity,” arXiv e-prints (Aug., 2020) arXiv:2008.03879, arXiv:2008.03879 [gr-qc].
- A. E. Broderick and A. Loeb, “Imaging bright-spots in the accretion flow near the black hole horizon of Sgr A*,” MNRAS 363 no. 2, (Oct., 2005) 353–362, arXiv:astro-ph/0506433 [astro-ph].
- K. Moriyama and S. Mineshige, “New method for black-hole spin measurement based on flux variation from an infalling gas ring,” PASJ 67 no. 6, (Dec., 2015) 106, arXiv:1508.03334 [astro-ph.HE].
- H. Saida, “How to measure a black hole’s mass, spin, and direction of spin axis in the Kerr lens effect 1: Test case with simple source emission near a black hole,” Progress of Theoretical and Experimental Physics 2017 no. 5, (May, 2017) 053E02, arXiv:1606.04716 [astro-ph.HE].
- S. E. Gralla, A. Lupsasca, and A. Strominger, “Observational signature of high spin at the Event Horizon Telescope,” MNRAS 475 no. 3, (Apr., 2018) 3829–3853, arXiv:1710.11112 [astro-ph.HE].
- K. Moriyama, S. Mineshige, M. Honma, and K. Akiyama, “Black Hole Spin Measurement Based on Time-domain VLBI Observations of Infalling Gas Clouds,” ApJ 887 no. 2, (Dec., 2019) 227, arXiv:1910.10713 [astro-ph.HE].
- P. Tiede, H.-Y. Pu, A. E. Broderick, et al., “Spacetime Tomography Using the Event Horizon Telescope,” ApJ 892 no. 2, (Apr., 2020) 132, arXiv:2002.05735 [astro-ph.HE].
- G. N. Wong, “Black Hole Glimmer Signatures of Mass, Spin, and Inclination,” ApJ 909 no. 2, (Mar., 2021) 217, arXiv:2009.06641 [astro-ph.HE].
- S. A. Balbus and J. F. Hawley, “A Powerful Local Shear Instability in Weakly Magnetized Disks. I. Linear Analysis,” ApJ 376 (July, 1991) 214.
- F. Yuan and R. Narayan, “Hot Accretion Flows Around Black Holes,” ARA&A 52 (Aug., 2014) 529–588, arXiv:1401.0586 [astro-ph.HE].
- E. Teo, “Spherical Photon Orbits Around a Kerr Black Hole,” General Relativity and Gravitation 35 no. 11, (Nov, 2003) 1909–1926.
- R. Takahashi, “Shapes and positions of black hole shadows in accretion disks and spin parameters of black holes,” ApJ 611 (Nov., 2004) 8.
- T. Johannsen and D. Psaltis, “Testing the No-hair Theorem with Observations in the Electromagnetic Spectrum. II. Black Hole Images,” ApJ 718 no. 1, (July, 2010) 446–454, arXiv:1005.1931 [astro-ph.HE].
- R. W. Lindquist, “Relativistic transport theory,” Annals of Physics 37 no. 3, (May, 1966) 487–518.
- S. W. Davis and C. F. Gammie, “Covariant Radiative Transfer for Black Hole Spacetimes,” ApJ 888 no. 2, (Jan., 2020) 94, arXiv:1911.07950 [astro-ph.HE].
- S. S. Doeleman, J. Weintroub, A. E. E. Rogers, et al., “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre,” Nature 455 no. 7209, (Sept., 2008) 78–80, arXiv:0809.2442 [astro-ph].
- G. C. Bower, S. Markoff, J. Dexter, et al., “Radio and Millimeter Monitoring of Sgr A*: Spectrum, Variability, and Constraints on the G2 Encounter,” ApJ 802 no. 1, (Mar., 2015) 69, arXiv:1502.06534 [astro-ph.HE].
- A. Chael, R. Narayan, and M. D. Johnson, “Two-temperature, Magnetically Arrested Disc simulations of the jet from the supermassive black hole in M87,” MNRAS 486 no. 2, (June, 2019) 2873–2895, arXiv:1810.01983 [astro-ph.HE].
- D. E. A. Gates, S. Hadar, and A. Lupsasca, “Photon emission from circular equatorial Kerr orbiters,” Phys. Rev. D 103 no. 4, (Feb., 2021) 044050, arXiv:2010.07330 [gr-qc].
- 2017.
- X. Guan and C. F. Gammie, “Radially Extended, Stratified, Local Models of Isothermal Disks,” ApJ 728 no. 2, (Feb., 2011) 130, arXiv:1012.3789 [astro-ph.HE].
- H. Shiokawa, J. C. Dolence, C. F. Gammie, and S. C. Noble, “Global General Relativistic Magnetohydrodynamic Simulations of Black Hole Accretion Flows: A Convergence Study,” ApJ 744 no. 2, (Jan., 2012) 187, arXiv:1111.0396 [astro-ph.HE].
- I. V. Igumenshchev, R. Narayan, and M. A. Abramowicz, “Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows,” ApJ 592 no. 2, (Aug, 2003) 1042–1059, arXiv:astro-ph/0301402 [astro-ph].
- R. Narayan, I. V. Igumenshchev, and M. A. Abramowicz, “Magnetically Arrested Disk: an Energetically Efficient Accretion Flow,” PASJ 55 (Dec., 2003) L69–L72, astro-ph/0305029.
- P. K. Leung, C. F. Gammie, and S. C. Noble, “Numerical Calculation of Magnetobremsstrahlung Emission and Absorption Coefficients,” ApJ 737 no. 1, (Aug., 2011) 21.
- S. E. Gralla and A. Lupsasca, “Null geodesics of the Kerr exterior,” Phys. Rev. D 101 no. 4, (Feb., 2020) 044032, arXiv:1910.12881 [gr-qc].
- C. T. Cunningham, “The effects of redshifts and focusing on the spectrum of an accretion disk around a Kerr black hole.,” ApJ 202 (Dec., 1975) 788–802.
- V. L. Fish, S. S. Doeleman, C. Beaudoin, et al., “1.3 mm Wavelength VLBI of Sagittarius A*: Detection of Time-variable Emission on Event Horizon Scales,” ApJ 727 no. 2, (Feb., 2011) L36, arXiv:1011.2472 [astro-ph.GA].
- M. D. Johnson, V. L. Fish, S. S. Doeleman, et al., “Resolved magnetic-field structure and variability near the event horizon of Sagittarius A*,” Science 350 no. 6265, (Dec., 2015) 1242–1245, arXiv:1512.01220 [astro-ph.HE].
- Gravity Collaboration, R. Abuter, A. Amorim, et al., “Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA*,” A&A 618 (Oct., 2018) L10, arXiv:1810.12641 [astro-ph.GA].
- R. C. Walker, P. E. Hardee, F. B. Davies, C. Ly, and W. Junor, “The Structure and Dynamics of the Subparsec Jet in M87 Based on 50 VLBA Observations over 17 Years at 43 GHz,” ApJ 855 no. 2, (Mar., 2018) 128, arXiv:1802.06166 [astro-ph.HE].
- T. Do, A. Hees, A. Ghez, et al., “Relativistic redshift of the star S0-2 orbiting the Galactic Center supermassive black hole,” Science 365 no. 6454, (Aug., 2019) 664–668, arXiv:1907.10731 [astro-ph.GA].
- Gravity Collaboration, R. Abuter, A. Amorim, et al., “Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole,” A&A 636 (Apr., 2020) L5, arXiv:2004.07187 [astro-ph.GA].
- M. D. Johnson, K. L. Bouman, L. Blackburn, et al., “Dynamical Imaging with Interferometry,” ApJ 850 no. 2, (Dec., 2017) 172, arXiv:1711.01286 [astro-ph.IM].
- K. L. Bouman, M. D. Johnson, A. V. Dalca, et al., “Reconstructing Video of Time-Varying Sources From Radio Interferometric Measurements,” IEEE Transactions on Computational Imaging 4 no. 4, (Jan., 2018) 512–527. https://ieeexplore.ieee.org/document/8361036.
- D. C. M. Palumbo, S. S. Doeleman, M. D. Johnson, K. L. Bouman, and A. A. Chael, “Metrics and Motivations for Earth-Space VLBI: Time-resolving Sgr A* with the Event Horizon Telescope,” ApJ 881 no. 1, (Aug., 2019) 62, arXiv:1906.08828 [astro-ph.IM].
- S. Doeleman, L. Blackburn, J. Dexter, et al., “Studying Black Holes on Horizon Scales with VLBI Ground Arrays,” arXiv:1909.01411 [astro-ph.IM].
- M. Mościbrodzka, J. Dexter, J. Davelaar, and H. Falcke, “Faraday rotation in GRMHD simulations of the jet launching zone of M87,” MNRAS 468 no. 2, (June, 2017) 2214–2221, arXiv:1703.02390 [astro-ph.HE].
- A. Jiménez-Rosales and J. Dexter, “The impact of Faraday effects on polarized black hole images of Sagittarius A*,” MNRAS 478 no. 2, (Aug., 2018) 1875–1883, arXiv:1805.02652 [astro-ph.HE].
- A. Ricarte, B. S. Prather, G. N. Wong, et al., “Decomposing the Internal Faraday Rotation of Black Hole Accretion Flows,” MNRAS (Sept., 2020) , arXiv:2009.02369 [astro-ph.HE].
- D. E. A. Gates, S. Hadar, and A. Lupsasca, “Maximum observable blueshift from circular equatorial Kerr orbiters,” Phys. Rev. D 102 no. 10, (Nov., 2020) 104041, arXiv:2009.03310 [gr-qc].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.