2000 character limit reached
Fubini-Study metrics and Levi-Civita connections on quantum projective spaces (2010.03291v4)
Published 7 Oct 2020 in math.QA
Abstract: We introduce analogues of the Fubini-Study metrics and the corresponding Levi-Civita connections on quantum projective spaces. We define the quantum metrics as two-tensors, symmetric in the appropriate sense, in terms of the differential calculi introduced by Heckenberger and Kolb. We define connections on these calculi and show that they are torsion free and cotorsion free, where the latter condition uses the quantum metric and is a weaker notion of metric compatibility. Finally we show that these connections are bimodule connections and that the metric compatibility also holds in a stronger sense.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.