A four-dimensional toric code with non-Clifford transversal gates (2010.02238v1)
Abstract: The design of a four-dimensional toric code is explored with the goal of finding a lattice capable of implementing a logical $\mathsf{CCCZ}$ gate transversally. The established lattice is the octaplex tessellation, which is a regular tessellation of four-dimensional Euclidean space whose underlying 4-cell is the octaplex, or hyper-diamond. This differs from the conventional 4D toric code lattice, based on the hypercubic tessellation, which is symmetric with respect to logical $X$ and $Z$ and only allows for the implementation of a transversal Clifford gate. This work further develops the established connection between topological dimension and transversal gates in the Clifford hierarchy, generalizing the known designs for the implementation of transversal $\mathsf{CZ}$ and $\mathsf{CCZ}$ in two and three dimensions, respectively.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.