Papers
Topics
Authors
Recent
2000 character limit reached

Space-Time Covariance Models on Networks with An Application on Streams (2009.14745v1)

Published 30 Sep 2020 in stat.ME and stat.AP

Abstract: The second-order, small-scale dependence structure of a stochastic process defined in the space-time domain is key to prediction (or kriging). While great efforts have been dedicated to developing models for cases in which the spatial domain is either a finite-dimensional Euclidean space or a unit sphere, counterpart developments on a generalized linear network are practically non-existent. To fill this gap, we develop a broad range of parametric, non-separable space-time covariance models on generalized linear networks and then an important subgroup -- Euclidean trees by the space embedding technique -- in concert with the generalized Gneiting class of models and 1-symmetric characteristic functions in the literature, and the scale mixture approach. We give examples from each class of models and investigate the geometric features of these covariance functions near the origin and at infinity. We also show the linkage between different classes of space-time covariance models on Euclidean trees. We illustrate the use of models constructed by different methodologies on a daily stream temperature data set and compare model predictive performance by cross validation.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.