Papers
Topics
Authors
Recent
2000 character limit reached

Robust Utility Maximization in a Multivariate Financial Market with Stochastic Drift (2009.14559v3)

Published 30 Sep 2020 in q-fin.PM

Abstract: We study a utility maximization problem in a financial market with a stochastic drift process, combining a worst-case approach with filtering techniques. Drift processes are difficult to estimate from asset prices, and at the same time optimal strategies in portfolio optimization problems depend crucially on the drift. We approach this problem by setting up a worst-case optimization problem with a time-dependent uncertainty set for the drift. Investors assume that the worst possible drift process with values in the uncertainty set will occur. This leads to local optimization problems, and the resulting optimal strategy needs to be updated continuously in time. We prove a minimax theorem for the local optimization problems and derive the optimal strategy. Further, we show how an ellipsoidal uncertainty set can be defined based on filtering techniques and demonstrate that investors need to choose a robust strategy to be able to profit from additional information.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.