Papers
Topics
Authors
Recent
2000 character limit reached

Similarity Detection Pipeline for Crawling a Topic Related Fake News Corpus

Published 28 Sep 2020 in cs.CL and cs.IR | (2009.13367v2)

Abstract: Fake news detection is a challenging task aiming to reduce human time and effort to check the truthfulness of news. Automated approaches to combat fake news, however, are limited by the lack of labeled benchmark datasets, especially in languages other than English. Moreover, many publicly available corpora have specific limitations that make them difficult to use. To address this problem, our contribution is threefold. First, we propose a new, publicly available German topic related corpus for fake news detection. To the best of our knowledge, this is the first corpus of its kind. In this regard, we developed a pipeline for crawling similar news articles. As our third contribution, we conduct different learning experiments to detect fake news. The best performance was achieved using sentence level embeddings from SBERT in combination with a Bi-LSTM (k=0.88).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.