Mixing and observation for Markov operator cocycles
Abstract: We consider generalized definitions of mixing and exactness for random dynamical systems in terms of Markov operator cocycles. We first give six fundamental definitions of mixing for Markov operator cocycles in view of observations of the randomness in environments, and show that they can be reduced into two different groups. Secondly, we give the definition of exactness for Markov operator cocycles and show that Lin's criterion for exactness can be naturally extended to the case of Markov operator cocycles. Finally, in the class of asymptotically periodic Markov operator cocycles, we show the Lasota-Mackey type equivalence between mixing, exactness and asymptotic stability.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.