Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Phase-Diffusion Equations for the Anisotropic Complex Ginzburg-Landau Equation (2009.12945v1)

Published 27 Sep 2020 in nlin.PS, math.AP, and math.DS

Abstract: The anisotropic complex Ginzburg-Landau equation (ACGLE) describes slow modulations of patterns in anisotropic spatially extended systems near oscillatory (Hopf) instabilities with zero wavenumbers. Traveling wave solutions to the ACGLE become unstable near Benjamin-Feir-Newell instabilities. We determine two instability conditions in parameter space and study codimension-one (-two) bifurcations that occur if one (two) of the conditions is (are) met. We derive anisotropic Kuramoto-Sivashinsky-type equations that govern the phase of the complex solutions to the ACGLE and generate solutions to the ACGLE from solutions of the phase equations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.