Phase-Diffusion Equations for the Anisotropic Complex Ginzburg-Landau Equation (2009.12945v1)
Abstract: The anisotropic complex Ginzburg-Landau equation (ACGLE) describes slow modulations of patterns in anisotropic spatially extended systems near oscillatory (Hopf) instabilities with zero wavenumbers. Traveling wave solutions to the ACGLE become unstable near Benjamin-Feir-Newell instabilities. We determine two instability conditions in parameter space and study codimension-one (-two) bifurcations that occur if one (two) of the conditions is (are) met. We derive anisotropic Kuramoto-Sivashinsky-type equations that govern the phase of the complex solutions to the ACGLE and generate solutions to the ACGLE from solutions of the phase equations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.