2000 character limit reached
Non-optimality of conical parts for Newton's problem of minimal resistance in the class of convex bodies and the limiting case of infinite height (2009.12128v2)
Published 25 Sep 2020 in math.OC
Abstract: We consider Newton's problem of minimal resistance, in particular we address the problem arising in the limit if the height goes to infinity. We establish existence of solutions and lack radial symmetry of solutions. Moreover, we show that certain conical parts contained in the boundary of a convex body inhibit the optimality in the classical Newton's problem with finite height. This result is applied to certain bodies considered in the literature, which are conjectured to be optimal for the classical Newton's problem, and we show that they are not.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.