2000 character limit reached
Expansion in Matrix-Weighted Graphs (2009.12008v1)
Published 25 Sep 2020 in math.CO and math.SP
Abstract: A matrix-weighted graph is an undirected graph with a $k\times k$ positive semidefinite matrix assigned to each edge. There are natural generalizations of the Laplacian and adjacency matrices for such graphs. These matrices can be used to define and control expansion for matrix-weighted graphs. In particular, an analogue of the expander mixing lemma and one half of a Cheeger-type inequality hold for matrix-weighted graphs. A new definition of a matrix-weighted expander graph suggests the tantalizing possibility of families of matrix-weighted graphs with better-than-Ramanujan expansion.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.